T VRV ey vyt oy Sy ey et
\ \ S .§/ ’\/' } s VAT
| N
DIGITAL
e COMMUNICATION
AW
RMNATIFNLL SYSTEMS

6.02 Fall 2014
Lecture #23

* Reliable transport
e Sliding-window protocol
* Analysis of sliding-window

Unanswered questions

(about packet-switched networks)

|]
I \V VI . ol a¥a¥a Tate
AW EES -

Nodes determine routes via either link-state, distance-vector, or path-vector routing

ow-do-nodesroute-around-link-fatlures”

\WAABAW AW I A\ VAW AW .

Routing protocols will eventually converge, but experience different problems along the way
(routing loops, counting-to-infinity, etc.)

[| [|
I \V VI . Tall a¥aY¥a Fate'
WAL AR W LW B \VAW AU
Ao that thn nobhwnrlke 10 hoot AffAart?
grvortac o ity oo oot oot

Nodes can use a stop-and-wait protocol

Recap: Stop-and-wait Protocol

At sender: (on same machine)
sender receiver app
- Send a packet, keep track of ——seq 1
Its sequence number I seq 1—»
«—ack 1—
- When an ACK is received for " — ceq 2
that packet, increment the 4_, | —— seq 2 ,
stored sequence number and 3 | Wack 2
repeat Q|
- If an ACK for the outstanding g
packet hasn't been received
after timeout seconds, re- " ———seq 2
transmit the packet . 2>
C
/
At receiver: ~seq 3
] > seq 3—»
. _ q
- Upon receipt of packet k, 2k 3

send an ACK for k

- If K is greater than the last
received segquence number,
deliver packet to app

«— time

Reliable Communication

Sending
Application

\4

Reliable
Sender

unreliable network

Receiving
Application

: A
each byte of data is

delivered exactly
once and in-order

Reliable
Recelver

today’s goal: develop a reliable transport protocol that gets
better utilization than the stop-and-wait protocol

Sliding-window Protocol

(on same machine)

sender receiver app
s 1
seq
. —~—_5¢q 2\ seq 1——»
Window: [4,5,] Seq 3\ seq 2—
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ \ seq 3———»
a e e
Q ; y
P S€q
T~—._5€q 5\ seq 4 —— §|
seq 6 "< seq 5— | 4
"""""""""""""""" R seq 6—»
e l
4 e
P

basic idea: send a new packet whenever an ACK is received,
allowing no more than W outstanding packets at a time

Sliding-window Protocol

(same protocol, different visualization)

window
sender 12\\\5

receiver

Sliding-window Protocol

(same protocol, different visualization)

window

sender

receiver

Sliding-window Protocol

(same protocol, different visualization)

window

sender

receiver

Sliding-window Protocol

(same protocol, different visualization)

window

sender

receiver

Sliding-window Protocol: Sender

(on same machine)
sender receiver app

Sliding-window Protocol: Sender

(on same machine)
sender receiver app

[/

Window: [1,2,3,4,5] seq 1

2
NENG
seq 4\

seq 5

o~

1/

Sliding-window Protocol: Sender

(on same machine)
sender receiver app

Window: [1,2,3,4,5] :::::}eq 1
kseq 2 \

seq 3

Sliding-window Protocol: Sender

(on same machine)
sender receiver app

Window: [2,3,4,5,6] :::::}eq 1
NN

Sliding-window Protocol: Sender

(on same machine)
sender receiver app

Window: [2,3,4,5,6]

Sliding-window Protocol: Sender

(on same machine)
sender receiver app

Window: [3,4,5,6,7]

Sliding-window Protocol: Sender

(on same machine)
sender receiver app

Window: [3,4,5,6,7]

Sliding-window Protocol: Sender

(on same machine)
sender receiver app

Window: [4,5,6,7,8]

Sliding-window Protocol: Sender

(on same machine)
sender receiver app

Window: [4,5,6,7,8]

Sliding-window Protocol: Sender

(on same machine)
sender receiver app

Window: [5,6,7,8,9]

Sliding-window Protocol: Sender

(on same machine)
sender receiver app

Window: [5,6,7,8,9]

Sliding-window Protocol: Sender

(on same machine)
sender receiver app

Window: [6,7,8,9,10]

Sliding-window Protocol: Sender

(on same machine)
sender receiver app

Window: [6,7,8,9,10]

Sliding-window Protocol: Sender

(on same machine)
sender receiver app

Window: [7,8,9,10,11]

Sliding-window Protocol: Sender

(on same machine)
sender receiver app

Window: [7,8,9,10,11]

timeout

Sliding-window Protocol: Sender

(on same machine)
sender receiver app

Window: [7,8,9,10,11]

timeout

Sliding-window Protocol: Sender

(on same machine)
sender receiver app

Window: [7,8,9,10,11]

timeout

Sliding-window Protocol: Sender

(on same machine)
sender receiver app

Window: [7,9,10,11,12]

window doesn’t have to
be contiguous!

timeout

Sliding-window Protocol: Sender

(on same machine)
sender receiver app

Window: [7,9,10,11,12]

window doesn’t have to
be contiguous!

timeout

Sliding-window Protocol: Sender

(on same machine)
sender receiver app

Window: [7,10,11,12,13]

window doesn’t have to
be contiguous!

timeout

Sliding-window Protocol: Sender

(on same machine)
sender receiver app

Window: [7,10,11,12,13]

window doesn’t have to
be contiguous!

timeout

Sliding-window Protocol: Sender

(on same machine)
sender receiver app

Window: [7,11,12,13,14]

window doesn’t have to
be contiguous!

timeout

Sliding-window Protocol: Sender

(on same machine)
sender receiver app

Window: [7,12,13,14,15]

window doesn’t have to
be contiguous!

timeout

Sliding-window Protocol: Sender

(on same machine)
sender receiver app

Window: [12,13,14,15,16]

window doesn’t have to
be contiguous!

timeout

Sliding-window Protocol: Sender

- Transmit a packet if len(un-ACKed list) < W

- Upon transmission of packet k, keep track of k in the un-
ACKed list, and the time that k was sent

- When an ACK for packet k is received, remove k from the
un-ACKed list.

- Periodically check the un-ACKed list to see if any packets
were sent more than timeout seconds ago. If so, re-transmit.

Sliding-window Protocol: Receiver

(on same machine)
sender receiver app

Sliding-window Protocol: Receiver

(on same machine)
sender receiver app

[/

seq 1

2
NENG
seq 4\

seq 5

o~

1/

Sliding-window Protocol: Receiver

(on same machine)
sender receiver app

[/

seq 1

kseq 2 \

seq 3

\Seq 4 R

seq 1—»

Sliding-window Protocol: Receiver

(on same machine)
sender receiver app

kseq 2 \

seq 3 seq 1——»

Sliding-window Protocol: Receiver

(on same machine)
sender receiver app

Sliding-window Protocol: Receiver

(on same machine)
sender receiver app

Sliding-window Protocol: Receiver

(on same machine)
sender receiver app

Sliding-window Protocol: Receiver

(on same machine)
sender receiver app

Sliding-window Protocol: Receiver

(on same machine)
sender receiver app

Sliding-window Protocol: Receiver

(on same machine)
sender receiver app

Sliding-window Protocol: Receiver

(on same machine)
sender receiver app

Sliding-window Protocol: Receiver

(on same machine)
sender receiver app

Sliding-window Protocol: Receiver

(on same machine)
sender receiver app

seq 6 ——»

Sliding-window Protocol: Receiver

(on same machine)
sender receiver app

seq 6 ——»

Sliding-window Protocol: Receiver

(on same machine)
sender receiver app

seq 6 ——»

timeout

Sliding-window Protocol: Receiver

(on same machine)
sender receiver app

seq 6 ——»

timeout

Sliding-window Protocol: Receiver

(on same machine)
sender receiver app

seq 6 ——»

receiver buffer:

[8]

timeout

Sliding-window Protocol: Receiver

(on same machine)
sender receiver app

seq 6 ——»

receiver buffer:

[8]

timeout

Sliding-window Protocol: Receiver

(on same machine)
sender receiver app

seq 6 ——»

receiver buffer:
[8,9]

timeout

Sliding-window Protocol: Receiver

(on same machine)
sender receiver app

seq 6 ——»

timeout

receiver buffer:
[8,9]

Sliding-window Protocol: Receiver

(on same machine)
sender receiver app

seq 6 ——»

timeout

receiver buffer:
[8,9,10]

Sliding-window Protocol: Receiver

(on same machine)
sender receiver app

seq 6 ——»

timeout

receiver buffer:
[8,9,10]

Sliding-window Protocol: Receiver

(on same machine)
sender receiver app

seq 6 ——»

timeout

receiver buffer:
[8,9,10,11]

Sliding-window Protocol: Receiver

(on same machine)
sender receiver app

seq 6 ——»

timeout

receiver buffer:

[]

seq 7-11 —>

Sliding-window Protocol: Receiver

- Send an ACK for every received packet

- Save delivered packets — ignoring duplicates — in a local
bufter

- Keep track of the next packet the application expects. After
each reception, deliver as many in-order packets as
possible.

DATA or ACK Sequence Number

1080

1060

1040

1020

1000

980

960

940

920

900

880 |

860

840

| ' ' l I : :
- (for reference)

: timeout is slightly larger than
» » rit, as it should be

- 4

+

|] L |

" ACKS for retransmitted packets

+

L

—

X:

L | |

1160

1180 1200 1220 1240 1260 1280 1300

Time (milliseconds)

1320

1340 1360 1380 1400

Throughput

o

Window Size vs. Throughput

1
i -

B*RTTmin
Window Size (W)

108 bytes/s At 10° byies/ >
Sender | ”| Switch < Receiver
~ - ~ -~

—
\-—’/ \-—’/

Propagation delay = One-way propagation delay

= 0 milliseconds = 10 milliseconds

Max queue size: 100 packets
Packet size: 1000 bytes

ACK size: 40 bytes
Initial window size: 10 packets

1. Double W
2. Halve the propagation times
3. Double bottleneck link rate

Netflix takes up 9.5% of upstream traffic on
the North American Internet

ACK packets make Netflix an upload monster during peak viewing hours.

by Jon Brodkin - Nov 20 2014, 7:00am EST
168

http://arstechnica.com/information-technology/2014/11/netflix-takes-
up-9-5-of-upstream-traffic-on-the-north-american-internet/

* Sliding-window protocol
Uses sequence numbers, acknowledgements, and
timeouts to ensure exactly-once delivery; allows W
packets on the wire at once to improve utilization

* Setting the window size
W should be at or slightly above (depending on loss)
the bandwidth-delay product of the network; this
keeps the network utilized without building excessive
quUEUES

