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6.02 Fall 2014
Lecture #12

Frequency response



Transmission Over a Channel
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Receiving the Response
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Intersymbol Interference

z[n| at 4 samples/bit
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Step response of audiocom channel

Demodulated Samples

04}

0.3}

Vobltage

0.2

0.1}

L

T 22000 24000 26000 28000
Sample number

30000 32000 34000




Modeling LTI Systems

If system S is both linear and time-invariant (LTl), then we can use the unit
sample response to predict the response to any input waveform x[n]:

Sum of shifted, scaled responses

Sum of shifted, scaled unit sample functions
. I\ L
snl= Y dkloln-kl—> S —>n]= Y slkliln-k]
k=— k=—00

CONVOLUTION SUM

Indeed, the unit sample response h[n] completely characterizes the LTI
system S, so you often see

X[n]— h[] — ¥In]




To Convolve (not “Convolute™!)

oe} 0

E x[kh[n k] = E h[m]x[n-m]

k=—0 M=—00
A simple graphical implementation:

Plot x[.] and h[.] as a function of the dummy index
(k or m above)

Flip (i.e., reverse) one signal in time,
slide it right by n (slide left if n is —ve), take the
dot.product with the other.

This yields the value of the convolution at
the single time n.

‘flip one % slide by n .... E@t.prod with the other’




Bounded-Input Bounded-Output
(BIBO) Stability

What ensures that the infinite sum

yinl="Y hlmlx[n-m]

N =—00

is well-behaved?

One important case: If the unit sample response is absolutely summable,

i.e., =
Y lhlm]l < o
and the input is bounded, i.e., | x[k]l = M <

Under these conditions, the convolution sum is well-behaved,
and the output is guaranteed to be bounded.

The absolute summability of h[n] is necessary and sufficient
for this bounded-input bounded-output (BIBO) stability.



Time Now for a
Frequency-Domain
Story

in which
convolution
is transformed to
multiplication,
and other
good things
happen



A First Step

Do periodic inputs to an LTI system, i.e., x[n] such that
Xx[n+P] = x[n] for all n, some fixed integer P >0

(with P usually picked to be the smallest positive integer
for which this is true) yield periodic outputs? If so, of
period P?

Yes! --- Since the system is Tl, using input x delayed
by P should yield y delayed by P. But x delayed by P is
X again, so y delayed by P must be y. (Linearity is not needed.)

Alternate argument: use Flip/Slide/Dot.Product to see
this easily: sliding by P gives the same picture back again,
hence the same output value.



But much more is true for
Sinusoidal Inputs to LTI Systems

Sinusoidal inputs, i.e.,
X[n] = cos(€2n + @)

yield sinusoidal outputs at the same angular ‘frequency’ Q rads/sample.

Note that such inputs are not even periodic in general.

Periodic if and only if 2rn/Q is rational, =P/Q for some
integers P(>0), Q. The smallest such P is the period.

Nevertheless, we often refer to 2rn/Q as the ‘period’ of this
sinusoid, whether or not it is a periodic discrete-time
sequence. This is the period of an underlying
continuous-time sinusoid that, sampled at integer times,
produces the given discrete-time sequence.



Examples

cos(3mtn/4) has frequency 3r/4 rad/sample, and

period 8; shifting by integer multiples of 8 yields the same
sequence back again, and no integer smaller than

8 accomplishes this.

cos(3n/4) has frequency % rad/sample, and is not periodic as
a DT sequence because 8m/3 is irrational, but we could

still refer to 8m/3 as its ‘period’, because we can

think of the sequence as arising from sampling the

periodic continuous-time signal cos(3t/4) at integer t.
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Sinusoidal Inputs and LTI Systems
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A very important property of LTI systems or channels:

If the input x[n] is a sinusoid of a given amplitude, frequency and phase,
the response will be a sinusoid at the same frequency, although the
amplitude and phase may be altered. The change in amplitude and
phase will, in general, depend on the frequency of the input.

Let’s prove this to be true ... but use complex exponentials instead, for
clean derivations that take care of sines and cosines (or sinusoids of
arbitrary phase) simultaneously.



A related simple case:
real discrete-time (DT) exponential
inputs also produce exponential
outputs of the same type

* Suppose x[n] =r" for some real number r

o0

inl= "y hlmlxln—m]

m=—w

= i hlm]r"™

m=—oo

=( i h[m]r‘m)r”

m=—OO

i.e., just a scaled version of the exponential input



Complex Exponentials

Euler’s formula shows the relation between complex exponentials and
our usual trig functions:

e’? = cos(@) + jsin(g)

1 ., 1 _; . 1 . 1 .
cos(@p)=—e’’ +—e™ sin(g) = —e’* ——e™
(@) 5 ; T >

In the complex plane, e’ = cos(¢)+ jsin(g) is a point on the
unit circle, at an angle of @ with respect to the positive real axis.
cos and sin are projections on real and imaginary axes, respectively.

Increasing ¢ by 2m brings you back to the same point!
So any function of ¢’? only needs to be studied for @ in [-it, 1] .



Useful Properties of e/®

When ¢ = 0O:

(More properties later)



Frequency Response

A(cosQn + jsinQn)=Ae/®" —  h[] ——Yy[n]

Using the convolution sum we can compute the system’s response to a
complex exponential (of frequency Q) as input:

ynl="Y himlx(n-m]

= Eh[m]Aejg(”_m)

— (E h[m]e ™"

= H(€2)- x[n]

where we’ve defined the frequency response of the system as

Ae]Qn

H(Q)= Eh[m]e‘jgm




From Complex Exponentials to
Sinusoids
cos(Qn)=(ein+ei0n)) /D
So response to this cosine input is
(H(Q)el+H(-Q)e ) /2 = Real part of H(Q)el"

= Real part of | H(Q2)|el(@n+<H()

cos(Qumn) HQ) —— [H(R)|cos(Qumn + <H(Q))

This is IMPORTANT



Example h[n] and H(Q) """

Sometimes

as H(el9)
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Frequency Response of “Moving Average”

Filters
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Relating Time- and Frequency-Domain
Properties

Why does the 5-point moving average filter on the preceding page have
nulls in its frequency response magnitude at +0.4mt and +0.8mt ?

(Think of convolving the unit sample response of this filter with sinusoids at
these frequencies.)



Convolution in Time <--->
Multiplication in Frequency

X[n] —_—>

h,|[.]

> hyl]

> y[n]

\ 4

X[l’l] —>

(hy*h,)[.]

— y[n]

In the frequency domain (i.e., thinking about input-to-output

frequency response):

X[n] —_—>

H, (L)

—> H,(Q)

— y[n]

i.e., convolution in time
has become multiplication

H(Q)=H,()H,(€2) in frequency!



Example: “Deconvolving” Output of
Channel with Echo

x[n]

S Channel, yn] Receiver z[n]

—> e

h,[.] filter, h,[.]

Suppose channel is LTI with

h,[n]=8[n]+0.83[n-1]

H,(Q) =77 = mlmle’™

= 1+ 0.8e32 =1 + 0.8cos(RQ) — j0.8sin(RQ)

So:
| H,(Q)| =[1.64 + 1.6cos(Q)]}/2  EVEN function of Q;

<H,(Q) = arctan [-(0.8sin(R2)/[1 + 0.8cos(£2)] ODD..



A Frequency-Domain View of

Deconvolution
}ﬂ) Channel, Y[n]> Receiver Z[l’l]
H, (<) filter, H,(Q)
Noise w[n]

Given H,(€2), what should H,(€2) be, to get z[n]=x|n|?

|:> H,(€)=1/H,(R) “Inverse filter”
= (1/ | Hy(R)]). expi-j<H, (Q)}

Inverse filter at receiver can do very badly in the presence of noise
that adds to y[n]:
filter has high gain for noise precisely at frequencies where
channel gain|H;(Q)|is low (and channel output is weak)!



A Deeper Reason for Interest in
Sinusoidal Inputs

General inputs x[.] can be written as “sums” of sinusoids

Each input sinusoidal component is mapped via the frequency response
H(€2) to its corresponding sinusoidal output component

Superposition of these output components yields the general response

y[.]

We'll develop this story over the next couple of lectures.



